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Abstract: The giant magnon is a rotating spiky string configuration which has the same

dispersion relation between the energy and angular momentum as that of a spin magnon.

In this paper we investigate the effects of the NS-NS and Melvin fields on the giant magnon.

We first analyze the energy and angular momenta of the two-spin spiky D-string moving

on the AdS3×S1 with the NS-NS field. Due to the infinite boundary of the AdS spacetime

the D-string solution will extend to infinity and it appears the divergences. After adding

the counter terms we obtain the dispersion relation of the corresponding giant magnon.

The result shows that there will appear a prefactor before the angular momentum, in

addition to some corrections in the sine function. We also see that the spiky profile of

a rotating D-string plays an important role in mapping it to a spin magnon. We next

investigate the energy and angular momentum of the one-spin spiky fundamental string

moving on the R × S2 with the electric or magnetic Melvin field. The dispersion relation

of the corresponding deformed giant magnon is also obtained. We discuss some properties

of the correction terms and their relations to the spin chain with deformations.
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1. Introduction

It is known that the AdS/CFT correspondence plays important role in studying the gauge

theories at strong coupling [1 – 3]. The correspondence is the equivalence between the

spectrum of free string theory on AdS5 × S5 and the spectrum of anomalous dimensions

of gauge invariant operators in the N = 4 supersymmetric Yang-Mills (SYM) theory. The

most studied cases were in the long-wave approximation corresponding to classical rotat-

ing and pulsating strings [4 – 6]. Another important cases are the low lying spin chain

states corresponding to the magnon excitations. In recent, Maldacena and Hofman [7] had

identified the elementary magnon with a rotating spiky string configuration moving on an

R × S2, which they called the ‘giant magnon’. The dispersion relation between energy E

and angular momentum J for the one spin giant magnon is

E − J =

√
λ

π
| sin p

2
| , (1.1)

where p is the magnon momentum, which on the string side is interpreted as a geometrical

angle of the string. Using the correspondence between the giant magnon and the sine-

Gordon soliton [8] they had calculated the scattering phase of two magnons and shown

that it matches the large λ limit of the conjecture of [9].

In the subsequent works [10], Dorey et al constructed the classical string solution which

corresponds to the bound state of the giant magnon. The two-charge giant magnon had

also been found in [10] which exploits the correspondence between classical string and the

complex sine-Gordon model. More properties on giant magnons have been investigated,

in which the finite J effects [11], quantum corrections [12], multispin properties [13, 14],

magnon from M-theory [15] and giant magnon moving on the β deformed AdS5×S5 [16, 14]

are discussed.
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The aim of this paper is to investigate the spiky D-string moving on the AdS3×S1 with

NS-NS antisymmetric B field background which was first used by Bachas and Petropoulos to

analyze the Anti-de-Sitter D-brane [17 – 19]. The background is the near-horizon geometry

of a black string which is constructed out of NS five-branes and fundamental string, in

contrast to the β-deformation background [20] which related to N = 1 β deformed SYM.

We will also investigate the spiky fundamental string moving on the electric/magnetic

Melvin fields background which was constructed by us and had been used to analyze the

properties of classical string solution and giant graviton therein [21, 22]. As the magnetic

fields couple differently to particles of different spins they naturally break supersymmetry.

Therefore the correspondence between the magnon and string will be in the content of less

supersymmetry, which is of interesting from the point of view of phenomena.

As the giant magnon discussed in [7] is a spiky string soliton solution we will first in

section II follow the method of [23] to investigate the spiky D-string in the flat spacetime

with external flux field. It is used to see how the field will modify the Regge trajectory.

In section III we follow the method of [12] to evaluate the energy and angular momenta

of the two-spin spiky D-string moving on the AdS3 × S1 with NS-NS B field [17]. Due

to the infinite boundary of the AdS spacetime the solution will extend to infinity and it

will appear the divergences. We adopt the prescription of [12] to add the counter term to

obtain a finite result of dispersion relation of the corresponding giant magnon. The result

is used to find how the background field will correct the relation. We also see that a spiky

profile of a rotating D-string is crucial to map it to a magnon. In section IV we follow

the method of [11] to evaluate the energy and angular momentum of the one-spin spiky

fundamental string moving on the electric or magnetic Melvin-field deformed R × S2. We

also find the dispersion relations of the corresponding Melvin-field deformed giant magnons.

We mention the possible relation of the correction terms in the dispersion relation to the

deformations of the spin chain [24 – 26]. The last section is devoted to the discussion.

Note that as the analyses in sections II and III will follow [12] in which the Nambu-

Goto action is adopted, therefore under the NS-NS B field we will adopt the Langrangian

∼
√

det(gab + Bab) which will describe a D-string. On the other hand, in the section IV,

as we follow the method in [11] in which the Polyakov action is adopted. Therefore under

the NS-NS B field we simply add a term ∼ Bµνεab∂aX
µ∂bX

ν to the Langrangian and it

will describe a fundamental string.

2. Spiky D-String under flux field

In this section we will follow the method of [23] to investigate the spiky D-string in the

flat spacetime with flux field. We consider the D-string moving on the flat x-y plan with

a constant NS-NS or EM flux field, Bxy = B. In terms of the polar coordinate the line

element and B field are described as

ds2 = −dt2 + dρ2 + ρ2dθ2, Bρθ = Bρ. (2.1)

To consider a rotating D-string we adopt the world-sheet coordinate [23] such that

t = τ, θ = ωτ + σ, ρ = ρ(σ). (2.2)
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Figure 1: A closed spiky D-string which has 4 spikes. The D-string coordinate ρ =
√

x2 + y2 is

confined in the region ρ0 ≤ ρ ≤ ρ1. It becomes spike at ρ = ρ1 and has valleys at ρ = ρ0 as ρ′ = 0

at this point.

The Nambu-Goto Lagrangian of the rotating D-string is described by

L =

√
λ

2π

∫

dσ
√

(1 − (1 + B2)ω2ρ2) ρ′2 + ρ2. (2.3)

The equation of motion of the D-string is described by the equation

ρ′ =
ρρ1

ρ0

√

ρ2 − ρ2
0

√

ρ2
1 − ρ2

, ρ1 ≡ 1
√

(1 + B2) ω
(2.4)

in which ρ0 is an integration constant.

For a convenience, we plot a solution of (2.4) in figure 1 which represents a rotating

D-string with 4 spikes. The spiky D-string is rotating with angular velocity ω as could be

read from (2.2).

Using the above solution we can calculate the energy and angular momentum

E = Pt =

√
λ

2π

∫

dσ
ρ′2 + ρ2

√

(1 − (1 + B2)ω2ρ2) ρ′2 + ρ2
=

√
λ

4π

ρ2
1 − ρ2

0

ρ2
1

. (2.5)

J = Pθ =

√
λ

2π

∫

dσ
(1 + B2)ωρ2ρ2

√

(1 − (1 + B2)ω2ρ2) ρ′2 + ρ2
=

√
λ
√

1 + B2

8π

(

ρ2
1 − ρ2

0

)

. (2.6)

The solution (2.4) tells us that the D-string coordinate ρ is confined in the region ρ0 ≤ ρ ≤
ρ1. It also shows the fact that ρ′ → ∞ if ρ → ρ1 and ρ′ → 0 if ρ → ρ0. Thus the D-string

has spikes at ρ = ρ1 and has valleys at ρ = ρ0 as ρ′ = 0 at this point. Thus the geometric

angle difference between the spike and valley is

∆θ =

∫

dσ =

∫

dρ

(

dρ

dσ

)−1

=

∫

dρ
ρ0

ρ0ρ

√

ρ2
1 − ρ2

√

ρ2 − ρ2
0

=
π

2

ρ1 − ρ0

ρ1

. (2.7)

In considering a close D-string which has n spikes then ∆θ = π
n . This implies that

ρ0 = ρ1

(

1 − 2

n

)

. (2.8)
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Substituting this relation into (2.5) and (2.6) the energy and angular momentum for a close

D-string with n spikes become

En =

√
λ

2π
2ρ1

(

1 − 1

n

)

. (2.9)

Jn =

√
λ

2π
ρ2
1

√

1 + B2

(

1 − 1

n

)

. (2.10)

Above relations imply that

En = 2

√

n − 1

n
Jn(B), Jn(B) ≡ J√

1 + B2
. (2.11)

Let us make two comments for the above analyses.

1. The velocity at which the spikes move is described by

v = ρ1

dθ

dt
= ρ1

dθ

dτ

dτ

dt
=

1√
1 + B2 ω

ω =
1√

1 + B2
< 1. (2.12)

Thus, in the case of B=0 the spike will move with the speed of light, as that found

in [23]. However, the introducing external flux field will render it to slow down.

2. In the case of B=0 and n=2 the relation (2.11) recovers the standard Regge trajectory

E =
√

2J , as that found in [23]. However, the introducing flux field will modify the

relation in which there will appear an overall factor (which is the function of B) in

the angular momentum, i.e. J → J(B) = 1√
1+B2

J . We will see that this property

also shows in the following sections.

3. Giant magnons under NS-NS field

The relevant part of the AdS3 ×S1 metric and NS-NS B field we used are described as [17]

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdχ2 + dφ2, B = B sinh2 ρdχ ∧ dt. (3.1)

To consider a rotating D-string we adopt the world-sheet coordinate [12] such that

t = τ, φ = t + ϕ(σ), χ = ωτ − ωψ(σ), ρ = ρ(σ). (3.2)

The Nambu-Goto Lagrangian of the rotating D-string is described by

L =

√
λ

2π

∫

dσ
√
D, (3.3)

where

D=cosh2 ρϕ′2+ω2 sinh2 ρ cosh2 ρψ′2+(1−ω2) sinh2 ρρ′2−ω2 sinh2 ρ(ϕ′+ψ)2−B2ω2 sinh4 ρψ′2.

(3.4)
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The associated energy and angular momenta of the rotating D-string are

E = Pt =

√
λ

2π

∫

dσ√
D

[

cosh2 ρ(ρ′2 + ω2 sinh2 ρψ′2 + ϕ′2) − B2ω2 sinh4 ρψ′2] , (3.5)

S = Pχ =

√
λ

2π

∫

dσ√
D

[

ω sinh2 ρ(ρ′2 + ϕ′2 + ϕ′ψ′)
]

, (3.6)

J = Pφ =

√
λ

2π

∫

dσ√
D

[

ρ′2 + ω2 sinh2 ρ(ψ′2 + ϕ′ψ′)
]

. (3.7)

The Lagrangian implies the following relation

ψ′ =
1

(1 − B2) sinh2 ρ
ϕ′ (3.8)

Substituting this relation into (3.4) we have a simple form

D = (1 − ω2)
(

cosh2 ρϕ′2 + sinh2 ρρ′2
)

− ω2B2

1 − B2
ϕ′2. (3.9)

The equation of motion of the D-string following from the Lagrangian then becomes

dr

dϕ
=

1
√

r2
1 − r2

0

√

r2 − r2
0

√

r2 − r2
1, r ≡ cosh ρ, (3.10)

in which

r2
0 ≡ ω2

1 − ω2

B2

1 − B2
, r2

1 ≡ r2
0 + c2, (3.11)

and c is an integration constant.

The equation (3.10) may be regarded as a zero-energy particle of mass M = 2 which

is moving under a potential

V (r) = −(r2 − r2
0)(r

2 − r2
1)

r2
1 − r2

0

, (3.12)

in which the angle ϕ is regarded as the “time” variable. The potential is plotted in figure 2.

We see that there are three typical D-string solutions: 1. If r1 < 1, then the rotating D-

string extends over the region 1 ≤ r < ∞. 2. If r1 ≥ 1, then the rotating D-string extends

over the region r1 ≤ r < ∞. 3. If r0 > 1, then there is a rotating D-string extends over

the finite region 1 ≤ r < r0. For a convenience, after solving (3.10) we plot the first two

profiles of the D-string solution r(ϕ) in figure 3.

Using the relation (3.10) the energy and angular momentum of the rotating D-string
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Figure 2: The potential V(r) of (3.12) under which a particle is moving on. Only the case of

r1 < 1 could there is a giant magnon, which is a spiky D-string extends over the region 1 ≤ r < ∞.

could be simplified to be the simple forms

E − J =

√
λ

π

1√
1 − ω2

∫ rf

ri

dr

√

r2 − r2
0

√

r2 − r2
1

+

√
λ

π

B2

1 − B2

1√
1 − ω2

(

1

1 − ω2
− ω2

1 − B2

)
∫ rf

ri

dr
r2
1 − r2

0
√

r2 − r2
1(r

2 − r2
0)

3/2
,

(3.13)

S =

√
λ

π

ω√
1 − ω2

∫ rf

ri

dr

√

r2 − r2
0

√

r2 − r2
1

+

√
λ

π

B2

1 − B2

ω√
1 − ω2

1

1 − ω2

∫ rf

ri

dr
r2
1 − r2

0
√

r2 − r2
1(r

2 − r2
0)

3/2
. (3.14)

Note that 1 ≤ r ≡ cosh ρ < ∞. Thus to regularize the integrations we have to introduce a

cutoff Λ = rf if the D-string extends to the infinity .

Let us first examine the situation of B = 0, which is studied in [12]. Now r0 = 0 and

we have the following two cases which have exactly analytic results.

1. If r1 < 1, then the rotating D-string extends over the region 1 ≤ r < ∞. A possible

D-string solution of (3.10) which has a spike at r = 1 is shown in left-hand figure of

figure 3. In this case, we can use the (3.13) and (3.14) to calculate the energy and

momentum. The results are

E − J =

√
λ

π

1√
1 − ω2

(

Λ −
√

1 − r2
1

)

,

(3.15)

S =

√
λ

π

ω√
1−ω2

(

Λ−
√

1−r2
1

)

+

√
λ

π

ω

(1−ω2)3/2

(

√

1−r2
1+

1

2r1

(π

2
−cos r1

)

)

.

(3.16)

Then, using the relation r1 = cos ϕ0 (see (3.19)) and after subtracting the divergent

terms the standard dispersion relation, (E − J) =
√

S2 + λ
π2 sin2 p

2
, could be found.

This is the result first obtained in [12].
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Figure 3: Two D-string configurations r(ϕ). The left-hand figure is a D-string configuration

extended over the region 1 ≤ r < ∞, which has a spike and is dual to the magnon. The right-hand

figure is a D-string configuration extended over the region 1 < r1 ≤ r < ∞, which has no spike and

does not dual to the magnon.

2. If r1 > 1, then the rotating D-string extends over the region r1 ≤ r < ∞. A possible

D-string solution of (3.10) which is shown in left-hand figure of figure 3 has no spike

and becomes smooth at r = r1 because dr
dϕ = 0 at this point. In this case we can

use the (3.13) and (3.14), while perform the integration from r = r1 to r = ∞, to

calculate the energy and momentum. The results are

E − J =

√
λ

π

Λ√
1 − ω2

, (3.17)

S =

√
λ

π

ω√
1 − ω2

Λ +

√
λ

π

ω

(1 − ω2)3/2

π

4r1

. (3.18)

After subtracting the divergent terms the result, however, dose not show the disper-

sion relation of a magnon. It thus seems that a spiky profile of a rotating D-string is

crucial to map it to a magnon. The details, however, remains to be investigated

Let us now turn to the case of B 6= 0 and consider the D-string extended over the

region 1 ≤ r < ∞ to analyze the possible giant magnon solution.

To proceed, let us calculate the geometrical angle of the giant magnon by using the

equation (3.10). However, an analytic relation could not be obtained without further

approximation. Therefore we will consider the case of small B (Note that r2
0 ∼ B2). Thus

ϕ0 =

∫

dϕ =

∫ Λ

1

dr

(

dr

dϕ

)−1

=

∫ Λ

1

dr

√

r2
1 − r2

0
√

r2 − r2
0

√

r2 − r2
1

≈
∫ Λ

1

dr
r1

r
√

r2 − r2
1

(

1 − r2
0

2r2
1

+
r2
0

2r2

)

=

(

1 − r2
0

2r2
1

)

[

cos−1(r1) −
π

2

]

+
r2
0

2

[

√

1 − r2
1

2r1

+
1

2r2
1

(

cos−1(r1) −
π

2

)

]

. (3.19)

For the small value of r0 above equation has an approximation solution

r1 ≈
(

1 +
r2
0

4

(

cos2 ϕ0

sin2 ϕ0

+
cos ϕ0

sin2 ϕ0

))

sin ϕ0. (3.20)
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In a similar way, in the case of small B we can perform the integrations in (3.13) and (3.14)

to find the analytic forms of the energy and angular momentum. After substituting the

relation (3.20) into the integrated forms we find that

(E − J)2 − S2 =
λ

π2

[

(1 + B2) sin2 p

2
− B2 sin

p

2
− B2

4

(

ω2

1 − ω2
sin2 p

2

)

cos2 p

2

]

≈ λ

π2

[

(1 + B2) sin2 p

2
− B2 sin

p

2

]

− B2

4
S2 cos2 p

2
, (3.21)

in which we have used the relation S2 = λ
π2

ω2

1−ω2 sin2 ϕ0 + O(B2). Above relation implies

the following dispersion relation

E − J ≈
√

S(B)2 +
λ

π2

[

(1 + B2) sin2
p

2
− B2 sin

p

2

]

, (3.22)

where

S(B) ≡
√

(

1 − B2

4
cos2

p

2

)

S, (3.23)

in which the relation of the geometrical angle ϕ0 and the magnon momentum p has been

used.

Let us make the following comments for the above result.

1. During the integrating we have introduced a cutoff Λ to regularize the integrations

and adopt the prescription of [12] to add the counter terms to cancel the infinity to

obtain a finite result. This prescription has been found to be consistent and could

reproduce a correct result, as detailed in [12]. Note that the infinity is coming from

the infinite boundary of the AdS spacetime.

2. To obtain the final analytic result (3.22) we have considered the approximation of

B2, ϕ0 ¿ 1 and have used the replacement B2ϕ0 → B2 sinϕ0 while not the replace-

ment B2ϕ0 → sin(B2ϕ0). This is because that the physical quantities S, J and E

shall be a periodic function of ϕ0. Thus, the appearance of the phase sin(B2ϕ0) will

be unphysical unless it is coming from the periodic functional form of B2 sin ϕ0. The

derivation of a dispersion relation without these assumptions is an interesting work

to be found.

3. The dispersion relation of the giant magnon on the β deformed AdS5×S5 found in [16,

14] is E − J =
√

S2 + λ
π2 sin2

(p
2
− βπ

)

in which β is a parameter of deformation.

Our result is more complex. Especially, we have seen that in our model there is an

overall factor before the angular momentum, i.e. S → S(B) ≡
√

(

1 − B2

4
cos2 p

2

)

S.

The property had also shown in the comment 2 of section 2.

4. The result (3.23) shows that there is a pre-factor before the angular momentum S

but it does not be shown in the angular momentum J . The asymmetric property

may be traced to the fact that the external B field is the tensor of B ∼ dχ ∧ dt and

– 8 –
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S ≡ Pχ while J ≡ Pφ. Note that the NS-NS B fields appear on β deformed AdS5×S5

are symmetric in the angels of χ and φ, thus it does not produce such an asymmetric

property [16, 14].

5. Let us examine the case of r0 > 1. Form figure 2 we see that there may exit a finite-

size D-string which extended over the region 1 ≤ r < r0. The solution has a spike

and is expected to be able to map to a magnon. However, from (3.13) and (3.14) we

see that there is the factor (r2
0 − r2)−3/2 which will produce the divergence during

integrating the variable r from r = 1 to r = r0 . This divergence is not coming from

the infinite boundary and could not be canceled by introducing a counter term. Thus

the solution is unphysical and shall be neglected.

4. Giant magnons under Melvin field

We first investigate the magnetic Melvin-field effect on the giant magnon and then the

electric Melvin-field effect on the giant magnon. We follow the method in [11] in which the

Polyakov action is adopted.

4.1 Magnetic Melvin field

The relevant part of the metric and magnetic field we used are described by [21]

ds2 = −
√

1 + B2 sin2 θdt2 +
√

1 + B2 sin2 θdθ2 +
sin2 θ

√

1 + B2 sin2 θ
dφ2

+
√

1 + B2 sin2 θ cos2 θdφ2
1,

Aφ =
B sin2 θ

2(1 + B2 sin2 θ)
. (4.1)

Due to the complex of the metric form we will in this section investigate the corresponding

Polyakov Lagrangian of the rotating string which is described by

L = −
√

λ

4π

∫

dσ

(

√

1 + B2(1 − z2) +

√

1 + B2(1 − z2)

1 − z2
(−ż2 + z′2) +

(1 − z2)(−φ̇2 + φ′2)
√

1 + B2(1 − z2)

√

1 + B2(1 − z2) z2(−φ̇2
1 + φ′2

1 ) + Bz(φ̇ z′ − ż φ′)

)

, (4.2)

where we have used the approximation Aφ ≈ B sin2 θ which is in the case of small B field

and have defined the variable z ≡ cos θ. The energy and angular momentum of the rotating

string are

E = Pτ =

√
λ

2π

∫

dσ
√

1 + B2(1 − z2), (4.3)

J = Pφ =

√
λ

2π

∫

dσ

(

(1 − z2)φ̇
√

1 + B2(1 − z2)
+

1

2
Bzz′

)

. (4.4)

J1 = Pφ1
=

√
λ

2π

∫

dσ
√

1 + B2(1 − z2)z2 φ̇1. (4.5)
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The Virasora constrains associated with the Lagrangian (4.2) are

1

1 − z2
(ż2 + z′2) +

(1 − z2)(φ̇2 + φ′2)

1 + B2(1 − z2)
+ z2(φ̇2

1 + φ′2
1 ) = 1, (4.6)

1

1 − z2
żz′ +

(1 − z2)φ̇φ′

1 + B2(1 − z2)
+ z2φ̇1φ

′
1 = 0. (4.7)

Now, following the method of [11] we consider a two-spin spiky string in the following

world-sheet coordinate

t = τ, φ = ωt + ϕ(σ − vωτ), φ1 = ντ − νvωσ, z = z(σ − vωτ). (4.8)

It can be checked that the above ansatz satisfies the equation of motion and the Virasora

constrains become the following relations

dϕ

dσ
=

v

1 − v2ω2

ω2 − B2

1 − z2
(z2 − z2

max), (4.9)

(

dz

dσ

)2

=

( √
1 − B2v2

√

1 + B2(1 − z2)

√
ω2 − B2

1 − v2ω2

√

z2
max − z2

√

z2 − z2
min

)2

−ν2z2(1−z2), (4.10)

where

z2
min ≡ 1 − 1

ω2 − B2
, z2

max ≡ 1 − v2

1 − B2v2
. (4.11)

To proceed we find that it is difficult to find the analytic result and we will hereafter

consider the one-spin spiky string by letting ν = 0. Equations (4.9) and (4.10) then imply

the following useful relation

dz

dϕ
=

1
√

1 + B2(1 − z2)

(1 − z2)
√

1 − B2v2

v
√

ω2 − B2

√

z2
max − z2

√

z2 − z2
min

, (4.12)

Using the relation (4.12) the energy and momentum could be expressed as a simple relation

E − ωJ =

√
λ

π

∫ zmax

zmin

dz
1√

1 − B2v2

z
√

z2
max − z2

−
√

λ

π
ω B(z2

max − z2
min). (4.13)

For a convenience, after solving (4.12) we plot a profile of the string solution z(ϕ) in figure 4.

We now begin to calculate the geometrical angle of the giant magnon by using the

equation (4.12). However, an analytic relation could not be obtained without further

approximation. Therefore we will consider the case of small B. Thus

ϕ0 =

∫

dϕ =

∫ zmax

zmin

dz

(

dz

dϕ

)−1

=

∫ zmax

zmin

dz v

√

1 + B2(1 − z2)
√

ω2 − B2

√

z2 − z2
min

(1 − z2)
√

1 − B2v2
√

z2
max − z2

≈
∫ zmax

zmin

dz

[

vz

(1 − z2)
√

z2
max − z2

+
vB2

2

z
√

z2
max − z2

]

1√
1 − B2v2

≈ cos−1

(

v√
1 − B2v2

)

+
vB2

2
. (4.14)
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Z

Figure 4: A string configurations z(ϕ). The spiky string configuration extended over the region

zmin ≤ z ≤ zmax is dual to the magnon.

Note that to obtain the above relation we have considered the limiting

ω2 → 1 + B2. (4.15)

In this case zmin → 0 and from (4.3) and (4.10) we see that

E =

√
λ

2π

∫

dz

(

dz

dσ

)−1
√

1 + B2(1 − z2),

=

√
λ

π
(1 − v2ω2)

∫ zmax

0

dz

z

1 + B2(1 − z2)√
1 − B2v2

1
√

z2
max − z2

→ ∞, (4.16)

In the same way J → ∞. Thus, in the limit of (4.15) we recover the giant magnon found

by Maldacena and Hofman [7].

For a small value of B field the equation (4.14) has an approximation solution

v ≈ (1 − B2 cos2 ϕ0) cos

(

ϕ0 −
B2

2
cos ϕ0

)

. (4.17)

Using this relation the equation (4.13) becomes

E − J(B) ≈
√

λ

π

[

sin
p

2
+

B2

2

(

cos2
p

2
sin

p

2
− cos2 p

2

)

− B

2
sin2 p

2

]

, (4.18)

where

J(B) ≡
√

1 + B2 J, (4.19)

in which we have replaced the geometrical angle 2ϕ0 by the magnon momentum p. Thus

we have found the correction terms of the giant magnon under a magnetic Melvin field.

Let us make the following comments for the above result.

1. We see that there is an overall factor before the angular momentum, i.e. J → J(B) ≡√
1 + B2 J . The property had shown in the sections II and III.

2. In the AdS/CFT [1 – 3] or string/spin chain [24] correspondence one maps the giant

magnons to the magnon excitations of low lying spin chain states. However, under

the magnetic field background the corresponding spin has been deformed and more
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interactions are added, as shown in our previous paper [25] and in [26]. Thus the

corresponding dispersion relation will show this properties in the correction terms.

Searching a corresponding spin chain system and making the precise map between the

spin deformations and the correction terms in the dispersion relation is an interesting

problem and worthy to study.

3. In principle we can also study the giant magnon in the SL(2) sector for the string

moving on the magnetic-field deformed AdS3 × S1. The background constructed

by us in [22] is just (4.1) while with the replacements θ → ρ and sin2 θ → sinh2 ρ.

However, in this case there will appear the factor B2 sinh2 ρ and because sinh2 ρ → ∞
as ρ → ∞ we are unable to analyze the system of small B field.

4.2 Electric Melvin field

The relevant part of the metric and electric field we used are described by [21]

ds2 = − dt2√
1 − E2

+
√

1 − E2
(

dθ2 + sin2 θdφ2
)

, At =
E√

1 − E2
. (4.20)

The corresponding Polyakov Lagrangian of the rotating string is described by

L = −
√

λ

4π

∫

dσ

(

1√
1 − E2

+
√

1 − E2
−ż2 + z′2

1 − z2
+

√

1 − E2 (−φ̇2 + φ′2)

)

, (4.21)

where we have defined the variable z ≡ cos θ. The energy and angular momentum of the

rotating string are

E = Pτ =

√
λ

2π

∫

dσ
1√

1 − E2
, (4.22)

J = Pφ =

√
λ

2π

∫

dσ
√

1 − E2 (1 − z2)φ̇. (4.23)

The Virasora constrains associated with the Lagrangian (4.21) are

√

1 − E2
−ż2 + z′2

1 − z2
+

√

1 − E2 (−φ̇2 + φ′2) =
1√

1 − E2
, (4.24)

żz′

1 − z2
+ (1 − z2)φ̇φ′ = 0. (4.25)

Now, as before, we consider a spiky string moving in the following world-sheet coordinate

t = τ, φ = ωt + ϕ(σ − vωτ), z = z(σ − vωτ). (4.26)

It can be checked that the above ansatz satisfies the equation of motion and the Virasora

constrains become the following relations

dϕ

dσ
=

vω2

1 − v2ω2

z2 − z2
max

1 − z2
, (4.27)

(

dz

dσ

)2

=
ω2

(1 − v2ω2)2
(

z2
max − z2

) (

z2 − z2
min

)

, (4.28)
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where

z2
min ≡ 1 − 1

(1 − E2)ω2
, z2

max ≡ 1 − v2

1 − E2
. (4.29)

Equations (4.28) and (4.29) imply the following useful relation

dz

dϕ
=

(1 − z2)

vω

√

z2
max − z2

√

z2 − z2
min

, (4.30)

After solving (4.30) we can plot a profile of the string solution z(ϕ). The result is like that

in figure 4.

Now, using the relation (4.28) the energy (4.22) could be expressed as a simple relation

E =

√
λ

2π

∫

dz

(

dz

dσ

)−1 1√
1 − E2

,

=

√
λ

π

1 − v2ω2

ω
√

1 − E2

∫ zmax

zmin

dz
1

√

z2 − z2
min

1
√

z2
max − z2

. (4.31)

In the same way the angular momentum (4.23) becomes

J =

√
λ

π

1√
1 − E2

∫ zmax

zmin

dz

√

z2
max − z2

√

z2 − z2
min

. (4.32)

Thus, in the limit of

ω =
1√

1 − E2
, (4.33)

we have the property

zmin = 0, ⇒ E, J → ∞, (4.34)

and we recover the giant magnon found by Maldacena and Hofman [7]. It is also easy to

see that in the limit (4.33) we have a simple relation

E − ωJ = E − J√
1 − E2

=

√
λ

π

∫ zmax

0

dz
z

√

z2
max − z2

=

√
λ

π
zmax. (4.35)

To proceed we have to calculate the geometrical angle of the giant magnon. In the

limit of (4.33) the equation (4.30) implies

ϕ0 =

∫

dϕ =

∫ zmax

zmin

dz

(

dz

dϕ

)−1

=
v√

1 − E2

∫ zmax

0

dz
z

(1 − z2)
√

z2
max − z2

= cos−1

(

v√
1 − E2

)

. (4.36)

Thus

v =
√

1 − E2 cos ϕ0. (4.37)
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Using this relation the equation (4.35) becomes

E − J(E) =

√
λ

π
sin

p

2
, J(E) ≡ J√

1 − E2
, (4.38)

in which we have replaced the geometrical angle 2ϕ0 by the magnon momentum p. We

thus have found an interesting property that the effect of an electric Melvin field on the

dispersion relation of the giant magnon is merely to add a prefactor before the angular

momentum, i.e. J → J(E) ≡ J√
1−E2

. Note that, while the relations (3.22) and (4.18) are

the results under a small B field the dispersion relation (4.38) is obtained without any

approximation.

Finally, let us make the following comments to conclude this paper.

1. The property we found in this paper is that the corrections of the dispersion relation

of a giant magnon under the external NS-NS or Melvin field are to appear a prefactor

before the angular momentum, in addition to some corrections in the sine function.

2. For the giant magnons in the β deformed Ads5×S5 it is known that the new dispersion

relation merely correct the phase factor, i.e. sin
(p

2

)

→ sin
(p

2
− βπ

)

[16, 14]. However,

as sin
(p

2
− βπ

)

= sin
(p

2

)

cos (βπ) − cos
(p

2

)

sin (βπ) it may be regarded as a specific

form of the correction terms in the sine function.

3. It is also interesting to consider a spiky string moving in the background

ds2 = −dt2 + dθ2 + sin2 θdφ2, Bθφ = B sin θ, (4.39)

which is the spacetime used by Bachas et al to study the flux stabilization of D-

branes [27]. Then, following the method of this section we can easily show that the

dispersion relation of the corresponding giant magnon becomes

E − J =

√
λ

π
(1 + B) sin

p

2
. (4.40)

In this case there appears a correction in the sine function, i.e. sin p
2
→ (1 + B) sin p

2

and it does not show any prefactor before the angular momentum.

5. Discussions

Since Maldacena and Hofman [7] identified the elementary magnon with a rotating spiky

string configuration moving on an R×S2, which they called the ‘giant magnon.’ there are

several literatures had investigated the properties of the corresponding string solutions [10 –

16]. In this paper we have investigated the effects of the NS-NS and Melvin fields on the

giant magnon. We first consider the two-spin spiky D-string moving on the AdS3×S1 with

NS-NS antisymmetric B field background. We see that there are D-string solution with or

without spike, which is extended to the infinite boundary of the de-Sitter spacetime. After

the regularization we see that only those with spikes could be mapped to the magnon.

For these solutions which extended to infinity we add the counter term to cancel the
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divergence in the energy and momentum and have obtained the dispersion relation of the

corresponding giant magnon. The result shows how the background field will produce the

correction terms. We also investigate the spiky fundamental string moving on the electric

or magnetic Melvin field background. As the Melvin fields couple differently to particles of

different spins they naturally break supersymmetry. Therefore the correspondence between

the magnon and string will be in the content of less supersymmetry, which is interesting

from the point of view of phenomena. The dispersion relation of the corresponding Melvin-

field deformed giant magnon is also obtained. We discuss some properties of the correction

terms and their relations to the spin chain with deformations.
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